20TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN LANDSCAPE ARCHITECTURE LANDSCAPE: INFORMED BY SCIENCE, SHAPED BY DESIGN MAY 22 – 29, 2019 DESSAU, GERMANY

COMPUTATION AND VISUALIZATION OF COASTAL SEA LEVEL RISE MITIGATION STRATEGIES

AIDAN ACKERMAN ASSISTANT PROFESSOR OF LANDSCAPE ARCHITECTURE SUNY COLLEGE OF ENVIRONMENTAL SCIENCE AND FORESTRY SYRACUSE, NY, USA

SCIENTIFIC DATA TO FORMULATE DESIGN WORKFLOWS FOR CLIMATE CHANGE

State University of New York College of **Environmental Science and Forestry**

This research investigates a digital workflow for simulating and visualizing the impact of extreme storms on the coastal landscape, and for testing the effectiveness of landscape designs intended to mitigate the sustained damage caused by these storms.

In the coming decades, coastal areas will be exposed to accelerated sea level rise of up to 0.6 meters by the year 2100; increase of sea surface temperature up to 3°C; and larger ocean waves and storm surges.

Nichols et al. 2007

We are unable to perfectly model future rates of sea level rise based on current information: the underlying risks of sea level rise, already noticeable, may be significantly different in the future than they are today.

This adaptation necessitates technology which can respond quickly to complex parameters, incorporate them into every stage of the landscape architecture design process, and illustrate their potential outcomes in visually meaningful ways which can be interpreted by the public.

Brown et al. 2005

GOAL: one model to Show!

erosion

erosion sea level rise

erosion sea level rise storm surge

COMMON "BATHTUB METHOD"

COMMON "BATHTUB METHOD"

ASSUMPTIONS

EROSION

Erosion rates will remain constant
low erosion rate of 0.25m/yr
high erosion rate of 0.5m/yr
a greater erosion rate than the average erosion rates recorded in that area since 1939 (Boothroyd, 2015)

Rising seas are predicted to increase erosion rates

ASSUMPTIONS MATERIALS

 Material composition remained fixed, as there was too much uncertainty about future construction or demolition

 Absence of simulated coastal restoration strategies, as the high cost of nourishment programs in response to disaster caused their potential to be uncertain

THIS PROJECT IS NOT:

A FORECASTING SYSTEM

This methodology should not be interpreted as a technique that can predict or forecast with exactitude how these coastal systems will evolve under climatic acute and longterm stresses.

WORKFLOW

The complexity of these systems, the translation of their principles into a workflow more familiar for designers, and the process of working in multiple software programs all contribute to some loss of precision.

The systems being simulated are variable and unpredictable, therefore the simulations themselves cannot be exact. Rather, the simulations express one possibility within the predictable range of outcomes.

AN ULTRA-PRECISE

A PREDICTIVE MODELING TOOL

This workflow does not embed information that can be adjusted for re-calculation of specific, quantifiable project outcomes.

THIS PROJECT IS:

A METHOD

An addition to a growing endeavor into the visualization of natural systems for design applications

A PROCESS

An ongoing examination of existing digital tools to improve how designers perceive environments, test design strategies, and understand spatial representations

A TECHNIQUE

A way of increasing how designers leverage the advances in computational power and efficiency to create relatively quick, iterative models of complex phenomena

METHODS

SITE | MISQUAMICUT, RI

Image from Google Earth

ECOLOGICAL DIVERSITY

CLOCKWISE | Salt marshes along Winnapaug Pond; Kayakers enjoying the brackish marshes of Little Maschaug Pond; Misquamicut State Beach; upland area between the ocean and the brackish marshes

MODELING EROSION

First Erosion Method

Modified Erosion Method

MODELING EROSION: GEOGRAPHIC IMAGER

HIGH EROSION RATE FOR SCENARIOS | 0.5m/yr LOW EROSION RATE FOR SCENARIOS | 0.25m/yr TIMELINE SCENARIOS 100yrs & 50yrs

100-YEAR FLOODING SCENARIO AT .5m/yr

GEOGRAPHIC IMAGER

Ps	File Edit	lmage Laye	r Type Select Fil	ter 3D View	v Window	Help				
۵.	- Foreg	round ~	Mode: Normal	 Opacity: 	100% v Te	olerance: 32	🖌 Anti-alias	🔽 Contiguous	All Layers	
>>	today.asc	@ 192% (Layer 0), Gray/16*) 🛛 👋							
		50	100 1 150	200	250	300 3	50 400) 450	500	550
	5 0 1 0 0 0									
ן איי איש פיניין. דיאי איש פיניין	2 0 2 5 0 3 0 0									
	3 5 									
RECORD	ер wiтн ENCAST 191.61%	MATIC	/1.35M							

-	8	×
ρ		× 🗅
		**
Learn		
3D Ma	p Gene	rato

TAKING MEASUREMENTS

PHOTOSHOP EDITING TERRAIN

11:04 PM Tuesday

11:04 PM Tuesday

11:04 PM Tuesday

Ps	File Edit	lmage La	yer Type	Select	Filter 3	D View	Windo	w Help						
÷	~ 🗌 🗆 Auto	-Select: Lay	ver 🗸 🗌 🗆	Show Tran	isform Contr	rols	Ĩ i 		≠ =	- I - I	* <u>*</u>	94 - 44		3D I
>>	today.asc (@ 271% (Laye	r 4, Gray/16*))* ×	1.JPG @ 6	66.7% (La	yer 1, RGB	/8#) * ×						
	0,,,2	20 , 40 ,	60 80	100 1	120 140	leo	180 20	00 ₁ 220	240	260, 280	300	320 34	0, 360,	380 4
		1.4		100	1	20	1	88.1		8.48				
$\frac{1}{2}$														
<u> </u>														
⊥ _1														
. 2 ²														
	-													
/ 220														
₩ 2														
$\mathbf{Q} = \frac{0}{2}$														
••• 0														
	-													
Ē, ģ														
4 0														_
360														
3	-								_		-			
0 4	20.029/	D	74/7 2014	X										
2	270.92%	Doc: 689	7K/7.26M	>						W a	2			
		be here to s	earch			Ļ	Ξi	P					<u> </u>	
								Ai	ld	Ae		x∃	***	0

Ps	File Edit	Image	Layer	Type S	Select	Filter	3D V	/iew \	Windov	v Help								
	~ 🗌 🗆 Auto	-Select:	Layer 🗸	□ Sh	iow Trans	sform Cor	ntrols	T	₩ <u>1</u>		* -		: :	±	1 1- 01	11		
		9-Select: (9) 271% (L) 20 40	Layer ayer 4, Gr 1 60	C Sh	ow Trans	sform Cor	ntrols	(Layer 50 18		8#) * ×						340	360	3D 1
	270.92%	Doc:	689.7K/7.26	5M														
	Отур	pe here t	o searcł	ı			d	<u></u>	Ξŧ	Ai	. 10		N 🗐 Ae	<u>لم</u>	o∎ x∃			

100-YEAR FLOODING SCENARIO AT .5m/yr

HIGH EROSION RATE FOR SCENARIOS | 0.5m/yr LOW EROSION RATE FOR SCENARIOS | 0.25m/yr TIMELINE SCENARIOS | 100yrs & 50yrs

EROSION + SEALEVEL RISE

Sea level heights are projected to increase between 0.8 meters and 1.8 meters by 2100. We have used these approximations to create three scenarios, with 0.8 meters of sea level rise being the most conservative risk scenario, 1.3 meters of sea level rise being an intermediate risk scenario, and 1.8 meters of sea level rise being the most extreme risk scenario.

Hauer et al. 2016

current condition

12.5m erosion + 0.8m sea level rise, 25-50yrs

25m erosion + 1.3m sea level rise, 50-100yrs

50m erosion + 1.8m sea level rise, 100yrs

EROSION + SEALEVEL RISE

FLUID SIMULATION PREPARATION

ile Edit View Curve Surface Solid Mesh Dimension Transform Tools Analyze Ren

ind 🗹 Near 🗹 Point 🗹 Mid 🗌 Cen 🗹 Int 🗌 Perp 🗋 Tan

71 y-526.307 z 0.000 Meters basin Grid Snap Ortho Planar Osnap SmartTrack Gumball Record

ge Top Left Right End Near Point Mid Cen Int Perp Tar

CPlane x21454 y289.837 z 0.000 Meters sections Grid Snap Ortho Planar Osnap SmartTrack Gumball Record History Filter Minutes from last save: 32

	-	٥	×	
				^
				~
splay	Per He	lp		0
1	Linety	pe		Prin
	Contin	UOUS	٠	Def
	Contin	uous	•	Def
	Contin	uous	+	Def
	Contin	uous	•	Def
	Contin	uous	•	Def
	Contin	UOUS	•	Det
	Contin	uous		Der
	Contin	Uous	- 1	Def
	Contin	UOUS	- X	Def
	Contin	1005	- 1	Def
	Contin	LIQUE		Def
	Contin	LIOUS		Def
	Contin	UOUS		Def
	Contin	uous	٠	Def
mater.	Contin	LOUS	•	Def
mater.	Contin	uous	٠	Def
mater.	Contin	uous	+	Def
mater.	. Contin	uous	٠	Def
mater.	Contin	LIOUS	٠	Def
	Conti	nuous	• 🔷	De
	Contin	uous	+	Def
	Contin	uous	-	Def
	Contin	UOUS	•	Def
	Contin	uous	- ?	Def
	Contin	uous		Det
	Contin	uous		Det
	Contin	uous		Der

	-	٥	×
			••
			U.
isplay	i i i i i i i i i i i i i i i i i i i	ielp	0
id ige			~
5			
	Place		
4	Place		

DEFINING COASTAL SCENARIOS

LEFT | Two sea level rise scenarios generated from NOAA's sea level rise viewer. The top image shows 4ft of sea level rise. The bottom image shows 6ft of sea level rise. RIGHT | A level 2 hurricane surge predictor for the area using NOAA's SLOSH program. Surges are shown between 13-16ft.

Maya includes a tool called Bifrost, a procedural framework which includes an Ocean Simulation System, which can create realistic ocean surfaces with waves, ripples, and wakes.

Bifrost relies upon a fluid implicit solver for the Navier-Stokes equations to simulate fluid motion, written here in pressure-velocity variables:

$$\nabla \cdot u = 0$$

$$\left(\frac{\partial}{\partial t} + u \cdot \nabla - v \nabla 2\right) u = g - \frac{1}{\rho} \nabla p$$

where $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ is the gradient operator in 3-D, f is an external force per unit mass.

Zaspel et al. 2011

r + f

 $(\partial/\partial t + u \cdot \nabla - v \nabla 2)$ is the frequently-recurring convection-diffusion operator, and

FLUID SIMULATION PROCESS – EARLY TRIALS

FLUID SIMULATION PROCESS – EARLY TRIALS

CURRENT BEACH SCENARIO | 1.8m storm surge

one hurricane surge around 5 to 6ft.

FUTURE SCENARIO | 25m erosion + 1.3m sea level rise

current condition

-	
-	

Swamp Beach Uplands Salt Marsh Brackish Marsh Fresh Marsh

12.5m erosion + 0.8m sea level rise, 25-50yrs

		_
_		_
-	_	-
		_

Swamp Beach Uplands Salt Marsh **Brackish Marsh** Fresh Marsh

25m erosion + 1.3m sea level rise, 50-100yrs

Beach Uplands Salt Marsh **Brackish Marsh** Fresh Marsh

50m erosion + 1.8m sea level rise, 100yrs

DESIGN INTERVENTION

The goals of an integrated approach to watershed protection include: reducing flooding during extreme events, providing healthy water for humans and nature, and restoring impaired waters such as the inland water bodies that appear to be threatened in our simulations.

Watson, 2010

With these goals in mind, we asked the radical question:

could a landscape design possibly recreate this lost coastal ecology

through restoring it in an inland location?

Superpositions: Renaturalization of River L'Aire, Geneva, Switzerland. Photo credit: Easytomap.

Superpositions: Renaturalization of River L'Aire, Geneva, Switzerland. Photo credit: Easytomap.

QUESTIONS